Mass and Energy Interchange – Mark Scheme

1. B – 2 marks

2. D – 2 marks

3.	(a)	energy nucleu	v needed to separate (1) is into constituent nucleons (1)	2	
	(b)	(i)	mass defect = $26 \times 1.00728 + 30 \times 1.00867$ (1) + 26×0.00055 (1) - $55.93493 = 0.529$ (u) (1) binding energy = $0.529 \times 931 = 492$ (MeV) (1)		
			binding energy per nucleon $\frac{492}{56} = 8.8$ (MeV) (1)		
		(ii)	mass defect = $0.529 \times 1.66 \times 10^{-27} = 8.8 \times 10^{-28}$ (kg) (1)	6	[8]
4.	(a)	(i) energy (required to break nucleus up into released when nucleus is formed from) separate nucleons (1)			
			$\begin{pmatrix} E_{p} \text{ of nucleons decreases when they come together} \\ \text{work is done on nucleons by the strong force} \end{pmatrix} (1)$		
			energy associated with the strong force (1)		
		(ii) mass of nucleus < total mass of constituent nucleons (1) Δm is difference between mass of nucleus and total mass of nucleons $[\Delta m = Zm_p + (A - Z)m_n - m_{nucleus}$ (1) (1)]			
			$E_{\rm b} = (\Delta m)c^2$ (1)		
			[or $E_{\rm b}$ is energy equivalent of mass defect using $E = mc^2$]	max 4 QWC 1	
	(b)	mass of $\Delta m = 0$ = 0.60 $E_{\rm b} = 0$	of nucleus = $63.92915 - (30 \times 0.00055) = 63.91265$ (u) (1) (30×1.00728) + (34×1.00867) - 63.91265 (1) (053 (u) (1) $0.60053 \times 931.3 = 559.3$ (MeV) (1)		
		$E_{\rm b}/{\rm nuc}$	cleon = $\frac{559.3}{64}$ = 8.74 (MeV/nucleon) (1)		
		(allow	C.E. for Δm and $E_{\rm b}$)	5	
	(c)	nucleu	is has high value of $E_{\rm b}$ /nucleon		
		[or is r	near maximum of $E_{\rm b}$ /nucleon vs A curve] (1)	1	[10]
5.	(a)	(i)	proton number 82 and nucleon number 214 (1)		
		(ii)	Pb (1)	2	

Mass and Energy Interchange - Mark Scheme

(b) (i) kinetic energy [or <u>electrostatic</u> potential energy] (1)

(ii)
$$\Delta m = \frac{E}{c^2}$$
 (1)
= $\frac{8.6 \times 10^{-13}}{(3 \times 10^8)^2} = 9.6 \times 10^{-30} \text{ kg}$ (1) 3 [5]

6. (a) (i)
$${}^{238}_{92}$$
 U $\rightarrow {}^{4}_{2} \alpha$ (1) $+ {}^{234}_{90}$ Th (1)

(ii)
$$\Delta m = 238.05076 - 4.00260 - 234.04357 = 0.00459(u)$$
 (1)
 $Q = 931 \times 0.00459$ (MeV) (1)
 $= 4.3$ MeV (1) 5

(b) (i) overall change in proton number
$$(=92 - 82) = 10$$

change in proton number due to α particles $(=8 \times 2) = 16$ (1)
therefore $\Delta Z = -6$ for the β^- particles corresponding to the six β^- particles (1)

(ii) proton changes to a neutron plus a positron [or
$$p \rightarrow n + \beta^{\dagger}(+v_e + Q)$$
] (1)
Pb-206 has a lower neutron to proton ratio than U-238 (1)
 α alpha emission raises the neutron to proton ratio slightly (1)
 β^{\dagger} emission lowers the ratio (more) (1)
 β^{\dagger} emission increases neutron to proton ratio (1)
positron emission competes with α emission but is
energetically less favourable (1) max 6

[11]

