1. $\mathrm{B}-2$ marks
2. D-2 marks
3. (a) energy needed to separate (1)
nucleus into constituent nucleons (1)
(b) (i) mass defect $=26 \times 1.00728+30 \times 1.00867$ (1)
$+26 \times 0.00055(\mathbf{1})-55.93493=0.529(\mathrm{u})(\mathbf{1})$
binding energy $=0.529 \times 931=492(\mathrm{MeV})(\mathbf{1})$
binding energy per nucleon $\frac{492}{56}=8.8(\mathrm{MeV})(\mathbf{1})$
(ii) mass defect $=0.529 \times 1.66 \times 10^{-27}=8.8 \times 10^{-28}(\mathrm{~kg})(\mathbf{1}) \quad 6$
4. (a) (i) energy $\binom{$ required to break nucleus up into }{ released when nucleus is formed from } separate nucleons (1)

$$
\binom{E_{p} \text { of nucleons decreases when they come together }}{\text { work is done on nucleons by the strong force }}
$$

(1)
energy associated with the strong force (1)
(ii) mass of nucleus < total mass of constituent nucleons (1)
Δm is difference between mass of nucleus and total mass of nucleons (1)
$\left[\Delta m=Z m_{\mathrm{p}}+(A-Z) m_{\mathrm{n}}-m_{\text {nucleus }}\right.$ (1) (1) $]$
$E_{\mathrm{b}}=(\Delta m) c^{2}$
[or E_{b} is energy equivalent of mass defect using $E=m c^{2}$] $\max 4$
QWC 1
(b) mass of nucleus $=63.92915-(30 \times 0.00055)=63.91265$ (u) (1)
$\Delta m=(30 \times 1.00728)+(34 \times 1.00867)-63.91265(1)$
$=0.60053(\mathrm{u})(1)$
$E_{\mathrm{b}}=0.60053 \times 931.3=559.3(\mathrm{MeV})$
$E_{\mathrm{b}} /$ nucleon $=\frac{559.3}{64}=8.74(\mathrm{MeV} /$ nucleon $)(\mathbf{1})$
(allow C.E. for Δm and E_{b})
(c) nucleus has high value of E_{b} /nucleon [or is near maximum of $E_{\mathrm{b}} /$ nucleon vs A curve] (1)
5. (a) (i) proton number 82 and nucleon number 214 (1)
(ii) $\mathrm{Pb}(\mathbf{1})$
(b) (i) kinetic energy [or electrostatic potential energy] (1)
(ii) $\Delta m=\frac{E}{c^{2}}$ (1)
$=\frac{8.6 \times 10^{-13}}{\left(3 \times 10^{8}\right)^{2}}=9.6 \times 10^{-30} \mathrm{~kg}(\mathbf{1})$
6. (a) (i) ${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{2}^{4} \alpha(\mathbf{1})+{ }_{90}^{234} \mathrm{Th}(\mathbf{1})$
(ii) $\Delta m=238.05076-4.00260-234.04357=0.00459(\mathrm{u})(\mathbf{1})$
$Q=931 \times 0.00459(\mathrm{MeV})(\mathbf{1})$
$=4.3 \mathrm{MeV}$ (1)
(b) (i) overall change in proton number $(=92-82)=10$
change in proton number due to α particles $(=8 \times 2)=16$ (1)
therefore $\Delta Z=-6$ for the β^{-}particles corresponding to the six β^{-}particles (1)
(ii) proton changes to a neutron plus a positron [or $\left.\mathrm{p} \rightarrow n+\beta^{+}\left(+v_{\mathrm{e}}+Q\right)\right]$ (1) $\mathrm{Pb}-206$ has a lower neutron to proton ratio than U-238 (1)
α alpha emission raises the neutron to proton ratio slightly (1) β emission lowers the ratio (more) (1)
β^{+}emission increases neutron to proton ratio (1) positron emission competes with α emission but is energetically less favourable (1)

