			Critical - ANS		
1.	(a)	(i)	proportion of U-235 is greater than in natural uranium (1)		
		(ii)	induced fission more probable with U-235 than with U-238 (1)	2	
	(b)	(i)	for steady rate of fission, one neutron per fission required to go on to produce further fission (1) each fission produces two or three neutrons on average (1) some neutrons escape [or some absorbed by U-238 without fission] (1) control rods absorb sufficient neutrons (to maintain steady rate of fission) (1)		
		(ii)	neutrons need to pass through a moderator (1) to slow them (in order to cause further fissions or prevent U-238 absorbing them) (1) neutrons that leave the fuel rod (and pass through the moderator) are unlikely to re-enter the same fuel rod (1) makes it easier to replace the fuel in stages (1)	max 5	[7]
2.	(a)	(i)	binding energy is the work done on nucleons to separate nucleons completely [or the energy released by nucleons when nucleus is formed from separated nucleons]] (1)	
		(ii)	average binding energy 9^{-1} per nucleon 0^{-1} $0^$		
	(b)	uraniu	A to > 220 (1) m splits into two fragments (1)	max 5	
	(0)	binding energy per nucleon rises (causing energy release) (1) 2			
	(c)	number of neutrons escaping is proportional to surface area (1) as mass increases a smaller fraction escapes (1) because surface/volume ratio decreases (1) hence fraction producing fission increases as mass increases (1)		max 3	
3.	(a)	(i) (ii)	amount of (fissionable) uranium (235) in fuel decreases (1) fission fragments absorb neutrons (1) fission fragments are radioactive or unstable (1)		[10]
			emitting β^- and γ radiation (1) some fission fragments have short half-lives or high activities (1)	Max 3	
	(b)	placed for sev [or to a transpo separa high le [altern rods an at geol storage	the by remote control (1) l in cooling ponds (1) veral months (1) allow short $T_{1/2}$ isotopes to decay] ort precautions, e.g. impact resistant flasks (1) tion of uranium from active wastes (1) evel waste stored (as liquid) (1) native for last two marks: re buried deep underground logically stable site] e precautions, e.g. shielded tanks or monitoring (1) nee to vitrification (1)	Max 5	

[8]

1