Nuclear Radius - Answers

1. (a) (i)
$$R_{\rm D} = 1.3 \times 2^{1/3} = 1.64 \text{ fm (1)} R_{\rm T} = 1.3 \times 3^{1/3} = 1.64 \text{ fm (1)}$$

(ii) energy at 'contact' =
$$\frac{Q_1 Q_2}{4\pi\varepsilon_0 r}$$
 (1)

$$= \frac{e^2}{4\pi\varepsilon_0 \times (3.51 \times 10^{-15})}$$
(1)
= 6.56×10^{-14} J(1)
 $\frac{6.56 \times 10^{-14}}{1.6 \times 10^{-13}} = 4.10$ MeV (1) max 5

(b) energy of nucleus = 3/2 kT(1)

$$6.56 \times 10^{-14} = 3/2 \times 1.38 \times 10^{-23} \times T$$
 (1)
gives $T = 3.2 \times 10^9$ K (1) (marks available for alternative
sensible use of energy data)

reference to range of speeds (or energies) of nuclei (or atoms) (1)

[8]

max 3

2. (a)
$$m = 4.0026 \times 1.66 \times 10^{-27}$$
 (kg) (1) $(= 6.6 \times 10^{-27} \text{ kg} - \text{electron masses are not significant})$
kinetic energy $(=\frac{1}{2}mv^2) = 0.5 \times 6.65 \times 10^{-27} \times (2.00 \times 10^7)^2$ (1)
 $(= 1.33 \times 10^{-12} \text{ J})$ 2
(b) loss in k.e. = gain in p.e. (1)
loss of ke. [or 1.33×10^{-12}] $= \frac{Qq}{4\pi\varepsilon_0 R}$ (1) $\left(=\frac{2Ze^2}{4\pi\varepsilon_0 R}\right)$
 $R = \frac{2 \times 79 \times (1.6 \times 10^{-19})^2}{4\pi \times 8.85 \times 10^{-12} \times 1.33 \times 10^{-12}}$ (1)
 $=2.73 \times 10^{-14} \text{ m (1)}$ 4
(c) any valid point including:
strong force complicates the process (*)
scattering caused by distribution of protons not whole nucleon distribution (*)
 α particles are massive causing recoil of nucleus which complicates results (*)
(*) any **one (1)** 1

3.

1

2

[7]

Nuclear Radius - Answers

- (b) the (de Broglie) wavelength of high energy electrons is comparable to nuclear radii [or not subject to the strong nuclear force] (1)
- (c) nuclear density is constant (1) separation of neighbouring nucleons is constant [or nucleons are close-packed] (1)

correct curve (1)

(e)
$$R = r_0 A^{\frac{1}{3}}$$
 (1)
 $R_0 \left(= R_c \left(\frac{A_0}{A_c} \right)^{\frac{1}{3}} \right) = 3.04 \times 10^{-15} \times \left(\frac{16}{12} \right)^{\frac{1}{3}}$ (1)
 $R_0 = 3.35 \times 10^{-15} \text{ m (1)}$

4.
$$(R^3 = R_0^3 A)$$

plot R^3 against A with axes labelled (1)
units on axes (1)
scales chosen to use more than 50% of page (1)

element	$R/10^{-15}$ m	Α	$R^{3}/10^{-45} \mathrm{m}^{3}$
carbon	2.66	12	18.8
silicon	3.43	28	40.4
iron	4.35	56	82.3
tin	5.49	120	165.5
lead	6.66	208	295

calculate data for table (1) plot data (1)(1) lose one mark for each error calculation of gradient

e.g. gradient =
$$\frac{300 \times 10^{-45}}{213}$$
 (1) (= 1.41×10^{-45} m³)
 r_0 (= gradient) $\frac{1}{3}$ (1)
= $(1.41 \times 10^{-45})^{\frac{1}{3}} = 1.1(2) \times 10^{-15}$ m (1)
alternative:

plot *R* against $A^{1/3}$ with axes labelled (1) units on axes (1) scales chosen to use more than 50% of page (1)

[9]

1

2

1

3

element	$R/10^{-15}$ m	Α	$A^{1/3}$
carbon	2.66	12	2.29
silicon	3.43	28	3.04
iron	4.35	56	3.83
tin	5.49	120	4.93
lead	6.66	208	5.93

calculate data for table (1) plot data (1)(1) lose one mark for each error calculation of gradient

e.g. gradient =
$$\frac{6.72 \times 10^{-15}}{6.0}$$
 (1) = (1.1(2) × 10⁻⁴⁵ m³)
 r_0 = gradient (1)
= 1.1(2) × 10⁻¹⁵ m (1)
[or plot lnR against lnA...]

 (b) assuming the nucleus is spherical ignoring the gaps between nucleons assuming all nuclei have same density assuming total mass is equal to mass of constituent nucleus any one assumption (1)

$$M = \frac{4}{3} \pi R^{3} \rho (\mathbf{1})$$
$$\left(\therefore M = \frac{4}{3} \pi R_{0}^{3} a \rho \right)$$
$$\left(\therefore \rho = \frac{3m}{4\pi R_{0}^{3}} \right) = \frac{3 \times 1.67 \times 10^{-27}}{4\pi \times (1.12 \times 10^{-15})^{3}} (\mathbf{1})$$
$$= 2.8 \times 10^{17} \text{ kgm}^{-3} (\mathbf{1})$$

max 8

4

[12]

