1. (a) (i) $R_{\mathrm{D}}=1.3 \times 2^{1 / 3}=1.64 \mathrm{fm}$ (1) $R_{\mathrm{T}}=1.3 \times 3^{1 / 3}=1.64 \mathrm{fm}$ (1)
(ii) energy at 'contact' $=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r}$ (1)

$$
\begin{aligned}
& =\frac{e^{2}}{4 \pi \varepsilon_{0} \times\left(3.51 \times 10^{-15}\right)} \mathbf{(1)} \\
& =6.56 \times 10^{-14} \mathrm{~J} \mathbf{(1)} \\
& \frac{6.56 \times 10^{-14}}{1.6 \times 10^{-13}}=4.10 \mathrm{MeV} \mathbf{(1)}
\end{aligned}
$$

$\max 5$
(b) energy of nucleus $=3 / 2 \mathrm{kT}$ (1)

$$
\begin{aligned}
& 6.56 \times 10^{-14}=3 / 2 \times 1.38 \times 10^{-23} \times T \mathbf{(1)} \\
& \text { gives } T=3.2 \times 10^{9} \mathrm{~K}(\mathbf{1})\left(\begin{array}{c}
\text { marks available for alternative } \\
\text { sensible use of energy data })
\end{array}\right.
\end{aligned}
$$

reference to range of speeds (or energies) of nuclei (or atoms) (1) max 3
2. (a) $m=4.0026 \times 1.66 \times 10^{-27}(\mathrm{~kg})(\mathbf{1})\left(=6.6 \times 10^{-27} \mathrm{~kg}-\right.$ electron masses are not significant)
kinetic energy $\left(=\frac{1}{2} m v^{2}\right)=0.5 \times 6.65 \times 10^{-27} \times\left(2.00 \times 10^{7}\right)^{2}(\mathbf{1})$
($\left.=1.33 \times 10^{-12} \mathrm{~J}\right)$
(b) loss in k.e. $=$ gain in p.e. (1)
loss of ke. [or $\left.1.33 \times 10^{-12}\right]=\frac{Q q}{4 \pi \varepsilon_{0} R}$ (1) $\left(=\frac{2 Z e^{2}}{4 \pi \varepsilon_{0} R}\right)$
$R=\frac{2 \times 79 \times\left(1.6 \times 10^{-19}\right)^{2}}{4 \pi \times 8.85 \times 10^{-12} \times 1.33 \times 10^{-12}}$
$=2.73 \times 10^{-14} \mathrm{~m}$ (1)
(c) any valid point including:
strong force complicates the process (*)
scattering caused by distribution of protons not whole nucleon distribution (*) α particles are massive causing recoil of nucleus which complicates results (*)
(*) any one (1)

graph shows a minimum (1)
which does not touch the axis (1)

Nuclear Radius - Answers

(b) the (de Broglie) wavelength of high energy electrons is comparable to nuclear radii [or not subject to the strong nuclear force] (1)
(c) nuclear density is constant (1) separation of neighbouring nucleons is constant [or nucleons are close-packed] (1)
(d)

> correct curve (1)
(e) $R=r_{0} A^{\frac{1}{3}}$ (1)

$$
\begin{align*}
& R_{0}\left(=R_{c}\left(\frac{A_{0}}{A_{c}}\right)^{\frac{1}{3}}\right)=3.04 \times 10^{-15} \times\left(\frac{16}{12}\right)^{\frac{1}{3}} \tag{1}\\
& R_{0}=3.35 \times 10^{-15} \mathrm{~m} \mathrm{(1)}
\end{align*}
$$

4. $\left(R^{3}=R_{0}^{3} A\right)$
plot R^{3} against A with axes labelled (1)
units on axes (1)
scales chosen to use more than 50% of page (1)

element	$R / 10^{-15} \mathrm{~m}$	A	$R^{3} / 10^{-45} \mathrm{~m}^{3}$
carbon	2.66	12	18.8
silicon	3.43	28	40.4
iron	4.35	56	82.3
tin	5.49	120	165.5
lead	6.66	208	295

calculate data for table (1)
plot data (1)(1) lose one mark for each error
calculation of gradient
e.g. gradient $=\frac{300 \times 10^{-45}}{213}(\mathbf{1})\left(=1.41 \times 10^{-45} \mathrm{~m}^{3}\right)$
$r_{0}(=\text { gradient })^{1 / 3}$ (1)
$=\left(1.41 \times 10^{-45}\right)^{1 / 3}=1.1(2) \times 10^{-15} \mathrm{~m}(\mathbf{1})$
alternative:
plot R against $A^{1 / 3}$ with axes labelled (1)
units on axes (1)
scales chosen to use more than 50% of page (1)

element	$R / 10^{-15} \mathrm{~m}$	A	$A^{1 / 3}$
carbon	2.66	12	2.29
silicon	3.43	28	3.04
iron	4.35	56	3.83
tin	5.49	120	4.93
lead	6.66	208	5.93

calculate data for table (1)
plot data (1)(1) lose one mark for each error
calculation of gradient
e.g. gradient $=\frac{6.72 \times 10^{-15}}{6.0} \mathbf{(1)}=\left(1.1(2) \times 10^{-45} \mathrm{~m}^{3}\right)$
$r_{0}=$ gradient (1)
$=1.1(2) \times 10^{-15} \mathrm{~m}(\mathbf{1})$
[or plot $\ln \mathrm{R}$ against $\ln \mathrm{A} . .$.]
(b) assuming the nucleus is spherical
ignoring the gaps between nucleons
assuming all nuclei have same density
assuming total mass is equal to mass of constituent nucleus any one assumption (1)
$\mathrm{M}=\frac{4}{3} \pi R^{3} \rho(\mathbf{1})$
$\left(\therefore M=\frac{4}{3} \pi R_{0}^{3} a \rho\right)$
$\left(\therefore \rho=\frac{3 m}{4 \pi R_{0}^{3}}\right)=\frac{3 \times 1.67 \times 10^{-27}}{4 \pi \times\left(1.12 \times 10^{-15}\right)^{3}}$ (1)
$=2.8 \times 10^{17} \mathrm{kgm}^{-3} \mathbf{(1)}$

