Nuclear Radius Questions

1.	When a deuterium nucleus and a tritium nucleus overcome their Coulomb barrier and fuse together they may be considered as charged spheres in contact. The constant r_0 which relates the nuclear radius, R , to the cube root of the mass number A may be assumed to be 1.3 fm.				
	(a)	(i) Calculate the radius of the deuterium nucleus $R_{\rm D}$ and the radius of the tritium nucleus $R_{\rm T}$ before fusion.			
		 (ii) Calculate the minimum energy, in MeV, which must be supplied to the deuterium nucleus and the tritium nucleus when they fuse together. 	,		
	(b)	Estimate the temperature at which deuterium and tritium nuclei would have enough kinetic energy to undergo	'		
		fusion. (3) (Total 8 marks))		
2.	(a) Show that the kinetic energy of an α particle travelling at 2.00 × 10 ⁷ ms ⁻¹ is				
		1.33×10^{-12} J when relativistic effects are ignored. (2)			
	(b)	Calculate the closest distance of approach for a head-on collision between the α particle referred to in part (a) and a gold nucleus for which the proton number is 79. Assume that the gold nucleus remains stationary during the collision.)		
	(c)	State one reason why methods other than α particle scattering are used to determine nuclear radii.)		
		(Total 7 marks))		
3.	Nucle diffra diagra	ear radii can be determined by observing the ction of high energy electrons, as shown in the am. electron beam			
	(a)	On the axes below, sketch a graph of the results expected from such an electron diffraction experiment.			
	intens diffrac electro	ity of cted ons			
		diffraction angle(θ) (2)	,		
	(b)	State why high energy electrons are used in determining nuclear size.	, ,		
	(c)	Electron diffraction experiments have been performed on a range of different nuclei to give information about nuclear density and average separation of particles in the nucleus. Give the main conclusion in each case.	,		
	(d)	Sketch a graph of the relationship between the radius of a nucleus and its nucleon number. (2))		
)		
	(e)	Given that the radius of the ${}^{12}_{6}$ C nucleus is 3.04×10^{-15} m, calculate the radius of the			
		¹⁶ ₈ O nucleus.			
		(3) (Total 9 marks))		

Nuclear Radius Questions

4. The radius of a nucleus, *R*, is related to its nucleon number, *A*, by

$$R = r_0 A^{\frac{1}{3}}$$
, where r_0 is a constant.

The table lists values of nuclear radius for various isotopes.

Element	R/10 ⁻¹⁵ m	А	
carbon	2.66	12	
silicon	3.43	28	
iron	4.35	56	
tin	5.49	120	
lead	6.66	208	

(a) Use the data to plot a straight line graph and use it to estimate the value of r_0 .

(8)

(b) Assuming that the mass of a nucleon is 1.67×10^{-27} kg, calculate the approximate density of nuclear matter, stating **one** assumption you have made.

(4)

(Total 12 marks)

