are evident by interactions between objects and/or their surroundings.

We can have contact forces (where the force comes from two objects pushing against each other) or remote forces (force fields acting - electric force or magnetic force for example).

A
force is a push, pull or twist.

Force has both magnitude (size) and direction - it is a vector.

It
makes an object start to move, move faster or slower or turn or deform...

It
results in acceleration and/or deformation.

Effects of a force

Choose
the 'effect of force' link you want

to jump to
from the menu below

Unit of force

Forces
are measured in newtons (N) after the famous scientist Sir Issac
Newton. The newton is the unit of force. One
newton is the force needed to give a mass of one kilogram an acceleration
of one metre per second squared.

Driving forces and counter (resistive) forces

Forces
arevectors. This means that as well as their size (sometimes called
'magnitude', the direction they act in matters. When you add them together
you have to consider this.

Forces
that push an object in the direction it is already travelling make it
accelerate (speed up!). These forces are called driving forces.

Gravity
is a driving force if you are going downhill and

the wind is a driving
force if it is at your back.

Forces
that push an object in the opposite direction to that it is already
travelling in make it decelerate - undergo negative acceleration or slow down.
These forces are called counter forces or resistive forces.

Gravity is a resistive force if you are trying
to go up hill and

the wind is a resistive force is it is in your face.

If
driving forces equal counter
forces there is no net force acting on a system and the state of
rest or motion will be unchanged.

This means that if the body is stationary
it will stay that way,

if it is travelling at a particular speed it
will carry on at that speed.

The counter force and driving force cancel
each other out.... therefore there is neither acceleration nor deceleration!

The system is a balanced force system.

This
constant velocity is sometimes called the terminal velocity of the system.

If
driving forces do not equal counter
forces there is a net force acting on a system and the state of
rest or motion will be changed. The counter force and driving force
do NOT cancel each other out.... therefore there is either acceleration
(if the driving force wins!) or deceleration (if the counter force wins!)
The system is a unbalanced force system.

At GCSE you will only have to add together co-linear forces, but at A level you will have to resolve the forces into horizontal and vertical components and then add those components.

Balanced
Force Systems and Unbalanced Force Systems

Balanced
forces will have no effect on the movement of an object: it will remain
stationary or, if it is already moving it will continue to move at the
same speed and in the same direction.

If the forces acting on an object do not cancel
each other out, an unbalanced force will act on the object.

This
unbalanced force will affect the movement of the object. How the movement
is affected depends on the direction and the size of the unbalanced force:

a stationary object will start to move in the direction of the unbalanced
force;

an object moving in the direction of the force will speed up;

an object moving in the opposite direction
to the force will slow down;

the greater the size of the unbalanced force,
the faster the object will speed up or slow down.

When an unbalanced force acts on an object in a
particular direction its speed changes (it accelerates) in that direction.
The greater the force, the greater the acceleration. The bigger the mass
of an object, the greater the force needed to give the object a particular
acceleration.

There
is an equation that links force to the acceleration it causes. It is called
Newton's Equation:

F
= ma

F

=
the force (in newton)

m

=
the mass of the object the force is applied to (in kilogram)

a

=
the acceleration produced when the force acts on the mass

The
acceleration produced on all masses when they are
near the Earth's surface is called the acceleration due to gravity.

This is the same whatever the mass of the object!

It is about 10m/s^{2}.

If
you drop a box of feathers from the top of a building at the same time
as a friend drops a box (of same size and dimensions) of lead from the same height, they will both
reach the ground at the same time! They will both accelerate at 10m/s^{2}. (We would have to make the containers the same size and shape to cancel out the effect of air resistance).

If we drop items from the same height on the moon, however, their shape and size makes no difference as there is no atmosphere and therefore no air resistance.

See this video:

The
force that acts on the mass of an object because of gravity is called
its weight. Therefore weight is a force and is measured in newtons.

Weight is the force of gravity acting on a
mass that is positioned in a gravitational field.

We use graphs to describe
how the motion of a body changes.